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Abstract The associations between floristic and palyno-

logical richness and landscape structure were studied based

on modern pollen–vegetation data from a patchy cultural

landscape in southern Estonia (northern temperate vegeta-

tion zone). Nine study sites (small lakes and their sur-

rounding vegetation) represent land cover gradient from

closed forest to semi-open vegetation. Floristic richness

(number of species) and floristic richness of pollen types

(number of pollen-equivalent taxa) were used to describe the

vegetation within the radius of 250 m from the pollen sam-

pling sites. Palynological richness was calculated to describe

the modern pollen samples diversity. Landscape structure

was estimated on the basis of landscape openness and three

landscape diversity measures: richness of community pat-

ches, Simpson evenness of community patches and Simpson

diversity of community patches. To study the effect of the

spatial scale of landscapes on the vegetation–landscape and

pollen–landscape associations, landscape structure was

estimated within eight radii (250–2,000 m) around each

lake. The results showed that landscape openness was the

most important determinant of both floristic richness and

palynological richness in southern Estonia and that land-

scape diversity estimated by Simpson diversity index was

also significantly associated with the richness estimates.

Floristic and palynological richness were significantly pos-

itively correlated with landscape structure within the radii

greater than 1,000 m from the pollen sampling sites, which is

similar to the estimated Relevant Source Area of Pollen in

southern Estonia. We conclude that within one floristic or

climatic region, palynological richness gives reliable esti-

mates about the variation in floristic richness and landscape

structure; however, caution must be taken when comparing

pollen-inferred vegetation diversities from different regions

or when interpreting fossil pollen records from times with

highly different vegetation associations.

Keywords Palynological richness � Floristic richness �
Landscape diversity. Landscape openness � Landscape

patchiness � Estonia

Introduction

Preservation of biodiversity is one of the major global con-

cerns today. Human-induced changes in landscape structure

due to intensification of forestry and agriculture, urbaniza-

tion and over-use of natural areas are considered among the

main threats to biodiversity (Vitousek et al. 1997; Foley et al.

2005). Studies of past biodiversity and its change through

time and space are valuable for understanding the present-

day patterns of biodiversity and for predicting the response of
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diversity to future changing environmental conditions and

anthropogenic land-use. Knowledge of the long term history

of biodiversity is difficult to obtain, as written sources are

scarce and rarely extend back more than a few centuries.

Fossil pollen is one of most widely used sources of infor-

mation for investigating past vegetation assemblages. In

order to interpret the historical pollen data, it is necessary to

study the present-day relationships of palynological diver-

sity (based on sedimentary pollen data) with surrounding

vegetation diversity and landscape diversity.

During the last two decades, several quantitative pollen-

based vegetation reconstruction models have been devel-

oped (Sugita 1994, 2007a, b) leading to a number of pollen-

based quantitative vegetation composition reconstructions

and a few spatial land-cover reconstructions (Nielsen and

Odgaard 2005; Veski et al. 2005; Poska et al. 2008). One of

central concepts of these models is the Relevant Source Area

of Pollen (RSAP) in order to define the spatial scale of

vegetation represented by pollen assemblages (Sugita 1994).

Several model-based and empirical investigations have

detected a significant relationship between the size of RSAP

and the spatial structure of the landscape (Sugita et al. 1999;

Broström et al. 2005; Nielsen and Sugita 2005; Hellman et al.

2009; Poska et al. 2011).

Although quantitative vegetation reconstructions based

on vegetation reconstruction models have been shown to

reflect relatively well the abundances of the dominant taxa

in the surrounding vegetation (e.g. Hellman et al. 2008;

Soepboer et al. 2010), reconstructions of past vegetation

diversity based on pollen data remain rare because the

drivers of the relationship between vegetation diversity and

palynological diversity are still unclear (Odgaard 2001). It is

generally accepted that palynological richness (number of

pollen types in pollen samples) reflects the floristic richness

(number of species) of the surrounding landscape (e.g.

MacDonald et al. 2008), but this assumption has rarely been

tested with modern pollen and vegetation data (but see

Meltsov et al. 2011). One of the possible reasons behind the

discrepancy between palynological richness and floristic

richness is caused by the fact that pollen types that can

potentially be identified in the sedimentary pollen record do

not necessarily correspond to plant species. The reduction in

richness during transformation from floristic species to pol-

len equivalent taxa is considerable (about 60 % in southern

Estonia—Meltsov et al. 2011). Furthermore, many of these

pollen types are rarely, if ever, found in sediments, which in

turn, reduces significantly the palynological richness

(Meltsov et al. 2011). Despite this drastic decrease in species

number, Meltsov et al. (2011) found significant positive

relationships between palynological richness, floristic rich-

ness of pollen types (based on pollen equivalent taxa in the

actual vegetation) and floristic richness. They also showed

that although the total floristic richness of pollen types in the

250 m radius around the study lakes was correlated with the

total palynological richness, the correlation was not found if

only wind-pollinated taxa were considered.

Floristic richness is typically positively associated with

environmental heterogeneity and landscape diversity within

the studied area (Burnett et al. 1998, 2003; Nichols et al.

1998; Weibull et al. 2003; Statzner and Moss 2004; Lund-

holm 2009). The relationship between floristic richness and

landscape diversity can be viewed in terms of the habitat

diversity hypothesis (sensu Shmida and Wilson 1985), by

which more diverse landscapes contain more available

habitats and can, therefore, accommodate more species.

Similarly, the ‘‘mosaic concept’’ developed by Duelli (1997)

assumes that floristic richness in mosaic landscapes depends

on the number of habitat patches. In addition, high landscape

diversity in the surroundings of the study area increases the

pool of species (Pärtel et al. 1996) that can colonize the local

habitats (Öster et al. 2007; Reitalu et al. 2009, 2011). In

addition to landscape diversity, openness in the landscape

(the amount of the non-forested area) is considered to be an

important factor influencing floristic richness in the northern

temperate zone (Billeter et al. 2008; Meltsov et al. 2011).

Semi-open landscape exhibits greater floristic richness than

completely open or completely forested landscapes (Billeter

et al. 2008).

Although several studies have shown significant relation-

ships between floristic richness and landscape structure and

diversity (Duelli 1997; Honnay et al. 2003; Statzner and Moss

2004; Billeter et al. 2008; Reitalu et al. 2011), it remains

unclear how well floristic richness based on pollen taxonomy

and palynological richness are suitable for representing flo-

ristic richness and reflecting landscape diversity.

In this study, we explore the relationship between paly-

nological richness, floristic richness, floristic richness of

pollen types and landscape diversity using a modern pol-

len–vegetation calibration dataset from small lakes in

southern Estonia. Our objectives were:

(a) To test whether floristic richness, floristic richness of

pollen types and palynological richness are similarly

associated with landscape structure and diversity.

(b) To explore the influence of spatial scale of the studied

landscape on the association between floristic/paly-

nological richness and landscape diversity.

Materials and methods

Study area

The study was carried out in southern Estonia (Fig. 1),

which is situated in the northern temperate forest zone. The

land-cover of the study area is patchy, consisting of a
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mixture of forests, mires, cultivated fields, grasslands and

settlements. Forests cover about 58 % of the total area (Pärt

et al. 2008). The main tree species that comprise most of

the forests are Alnus incana, Betula pendula, Picea abies

and Pinus sylvestris. Temperate broad-leaved deciduous

trees, such as Acer platanoides, Fraxinus excelsiour,

Quercus robur, Tilia cordata and Ulmus glabra appear

occasionally. The main crops grown in the fields are

cereals (Avena sativa, Hordeum vulgare, Secale cereale,

and Triticum aestivum), rape (Brassica napus) and potatoes

(Solanum tuberosum). The most abundant species on the

grasslands are graminoids, such as Agrostis capillaris,

Alopecurus pratensis, Dactylis glomerata, Elymus repens,

Festuca rubra, F. pratensis, Phleum pratense and Poa

trivialis (Kukk and Kull 2005).

Nine small lakes with a median diameter of 200 m (area

1–14 ha) were selected for study (Fig. 2; Table 1). The

greatest distance between two lakes is about 100 km (Fig. 1).

The lakes were selected along a gradient of different land-

cover patterns, and landscape openness within a radius of

2 km from the lake varied from 1 to 51 % (Fig. 2; Table 1).

Vegetation mapping

Vegetation mapping was implemented within a 2 km

radius of each lake in accordance with the simulation-based

estimate of RSAP (sensu Sugita 1994) of the lakes (Gail-

lard et al. 2008). Detailed vegetation surveys were carried

out within 250 m around the lakes. The vegetation maps

were digitalised using MapInfo Professional 7.5 (MapInfo

Corporation, Troy, NY, USA).

Vegetation mapping within 2 km

The vegetation maps were compiled within a 2 km radius

around each lake. The state forestry database was used to

compile the forest maps (‘‘Environmental Information’’—

http://www.keskkonnainfo.ee/). In non-forested areas or in

forested areas with no forest data available, vegetation

field-surveys were performed using aerial photographs

(scale 1:10,000) as base-maps. During the field-survey, the

communities were identified (according to Paal’s 1997

vegetation classification scheme). In every mapped com-

munity patch, the percentage cover of the major wind-

pollinated pollen taxa (Alnus, Betula, Corylus, Fraxinus,

Picea, Pinus, Quercus, Salix, Ulmus, Tilia, Artemisia,

Cerealia, Chenopodiaceae, Cyperaceae, Plantago lanceo-

lata, P. major/media, Poaceae, Rumex acetosa and Urtica)

was determined visually at three random points. The

average of the three determinations was used as an estimate

of pollen taxon abundance within each community patch.

Vegetation mapping within 250 m

An inscribed circle was fitted to aerial photographs of each

lake such that it touched the nearest edge of the lake.

Vegetation surveys were made within a 250 m wide buffer

area from the edge of the inscribed circle around each lake.

Fig. 1 The study area in

southern Estonia. The sites for

pollen and vegetation data

collection are marked with

circles
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Two different methods were used during the vegetation

survey:

(1) Plot method. On aerial photographs (scale 1:10,000)

the 250 m wide band was divided into four equal

sectors and ten vegetation survey points were

placed in each sector as evenly as possible consid-

ering the landscape patchiness. The percentage

cover of all vascular plant species was recorded

within a 1 m 9 1 m plot in each of the 40 survey

points.

Fig. 2 Vegetation maps of nine study sites (within a 2 km radius from the lake basin)
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(2) Community species list method. Inside the 250 m

wide band, vegetation communities (according to

Paal 1997) were identified and mapped in the field

and a full species list, including abundance estimates

using the Braun-Blanquet cover-abundance scale

(rare—1, uncommon—2, moderately common—3,

frequent—4, dominant—5) was recorded for each

community patch.

A pollen-type equivalent taxon according to Fægri and

Iversen (1989) and Beug (2004) was assigned to each

recorded species.

Pollen-based vegetation classification scheme

The vegetation classification scheme used for vegetation

mapping (according to Paal 1997) does not always reflect

the landscape structure from the pollen ‘‘point of view’’.

For example Paal’s (1997) communities ‘‘poor paludified

forest’’ and ‘‘dry boreal forest’’ can both be pine forests

with Vaccinium shrub and occurring next to each other,

they would form one community patch from the pollen

‘‘point of view’’ instead of two community patches.

Cluster analysis was used to create a vegetation classi-

fication scheme that would reflect the pollen ‘‘point of

view’’. The community species lists (‘‘Vegetation mapping

within 250 m’’ section, method 2) with abundance esti-

mates of the major wind-pollinated pollen taxa within each

250 m mapping area were used to determine the pollen-

based vegetation classification scheme. Program Past 2.10

(Hammer et al. 2001) and Ward’s method were used to

carry out the cluster analysis. According to the cluster

analysis the vegetation was classified to the following

pollen-based community types: mire, grassland, arable land

for open areas; and Salix, Alnus, Betula, Picea, Pinus and

mixed forest for forested areas. ‘‘Settlement’’, ‘‘temperate

broad leaved forest’’ and ‘‘water body’’ were added to the

community type list, as these communities were not iden-

tified using cluster analysis due to a lack of vegetation data

or poor representativity. All communities mapped in the

field according to Paal’s (1997) vegetation classification

scheme within 2 km were renamed according to the above

described pollen-based classification scheme.

Pollen sampling and pollen analysis

A sediment sample (upper 1 cm) was taken from the centre

of each lake using a Willner-type gravity corer (produced

in Uppsala University e.g. Nilsson 2004), which operates

similarly to Kajak-type corers (Glew et al. 2001). Two cm3

of sediment were taken from each well-mixed sample for

pollen analysis. Pollen samples were prepared with the

standard KOH, acetolysis method (Erdtman 1969) and

mounted in silicone oil (Andersen 1960). A total of 1,500

arboreal pollen grains was counted in each sample. Pollen

identification was carried out according to Fægri and

Iversen (1989) and Beug (2004) and using the modern

pollen reference collection of the Department of Botany at

the Estonian University of Life Sciences.

Vegetation and pollen variables (Table 2)

Floristic richness (Fr) indicates the number of species

recorded per sampling site (Magurran 2004; Van Dyke

2008), estimated as the total number of species identified in

the 40 vegetation plots around each lake within a 250 m

radius. Since the vegetation plots contained only herb taxa,

the number of tree species recorded in the community

species lists (‘‘Vegetation mapping within 250 m’’ section,

method 2) were added to the herb Fr.

Floristic richness of pollen types (Frp) is the corre-

sponding term for Fr when all species were reduced to

pollen type equivalents.

Palynological richness (Pr) reflects the number of pollen

types in the pollen sample for a specific counting sum (Birks

and Line 1992; Odgaard 1999). Pr was estimated for a con-

stant counting sum (1,612) using rarefaction analysis (Birks

and Line 1992). The result of rarefaction analysis represents

the estimated number of taxa reduced to the lowest pollen

Table 1 Characteristics of study sites

Study site Openness (%) Lake area (ha) Lake diameter (m) Water depth (m) Fr Frp Pr

Jaska 29 14.3 340 3.2 147 74 32

Kadastiku 6 7.2 208 6.4 101 53 28

Mähkli 39 8.3 170 4.6 153 71 31

Nakri 48 1.0 43 2.5 118 71 33

Nihu 1 5.5 185 4.0 80 46 26

Nohipalu Valgejärv 2 6.6 230 6.2 83 54 30

Paidra 25 11.0 210 6.2 99 58 30

Savijärv 26 6.7 162 8.6 110 55 28

Tollari 51 5.8 210 3.0 163 78 34
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sum for a set of samples. The estimated number of taxa

[E(Tn)] is calculated according to the formula:

EðTnÞ ¼
XT

i¼1

1� ðN � NiÞ!ðN � nÞ!
ðN � Ni � nÞ!N!

� �
ð1Þ

where E(Tn) is the expected palynological richness in stan-

dardized pollen count Ni, T is the total number of pollen types

in the original pollen assemblage, N is the overall pollen sum,

and n is the number of grains selected for standardization in

the rarefied sample (Birks and Line 1992).

Landscape variables (Table 2)

Diversity can be divided into two main components: rich-

ness and evenness.

The richness of community patches (PatchR) was esti-

mated as the number of community patches around each

lake.

The evenness of community patches (PatchE) was cal-

culated according to Simpson’s evenness (E) formula

(Magurran 2004):

E ¼ 1=
PS

i¼1 p2
i

S
ð2Þ

where pi is the proportion of area covered by patch i and

S is the number of patches.

Diversity indices that integrate both richness and even-

ness are also often used to describe landscape structure

(McGarigal 2002). The Simpson’s diversity index (D)

(Magurran 2004) was used to calculate diversity of com-

munity patches (PatchS):

D ¼ 1�
XS

i¼1

p2
i ð3Þ

The E and D range from zero to one. Simpson’s

diversity index and Simpson’s evenness index were chosen

as both give more weight to the more abundant taxa and

Simpson’s evenness index is independent of the number of

taxa (Smith and Wilson 1996; Magurran 2004).

In addition to the landscape diversity measures, the

proportion of unforested area around each lake was used as

a measure of landscape openness.

All the above listed measures of landscape structure

were calculated separately within eight radii around each

lake (250, 500, 750, 1,000, 1,250, 1,500, 1,750 and

2,000 m radius from the inscribed circle within the lake)

using the pollen based vegetation classification scheme.

Numerical analysis

To test whether the vegetation structure was spatially

autocorrelated (geographically close locations being also

more similar in their vegetation composition), we used

Mantel tests of spatial distance (Euclidean distance)

between the lakes with vegetation dissimilarity (Fd), veg-

etation dissimilarity of pollen types (Fdp) and palynologi-

cal dissimilarity (Pd). The Bray-Curtis dissimilarity

coefficient (Bray and Curtis 1957) was used to calculate the

vegetation and pollen dissimilarities. Correlation analyses

using the Pearson product-moment correlation coefficient

were carried out to find relationships between Fr/Frp/Pr and

PatchR/PatchE/PatchS/Openness within eight radii around

the lakes (250, 500, 750, 1,000, 1,250, 1,500, 1,750 and

2,000 m).

In the present study we did 96 correlation tests, which

may lead to false significances (Type I error). To correct

for the high number of significance tests, the Benjamini

and Hochberg (1995) correction was used to adjust the

p values.

The software package R (version 2.10.1) was used for

statistical analysis (R Development Core Team 2009).

Table 2 Explanations and abbreviations of diversity measures

Type of

diversity

Diversity measure and explanation Abbreviation

Palynological

diversity

Palynological richness—number of

pollen types found in the pollen

sample (rarefaction to 1,612 pollen

grains)

Pr

Vegetation

diversity

Floristic richness—number of

species within 250 m radius around

the pollen sampling site

Fr

Floristic richness of pollen types—

number of pollen-equivalent taxa

within 250 m radius around the

pollen sampling site

Frp

Landscape

diversity

Patch richness—number of

community patches in the

landscape within eight radii

(250–2,000 m) according to

pollen-based vegetation

classification scheme

PatchR

Patch evenness—Simpson evenness

of community patches in the

landscape within eight radii

(250–2,000 m) according to

pollen-based vegetation

classification scheme

PatchE

Patch diversity—Simpson diversity

of community patches in the

landscape within eight radii

(250–2,000 m) according to

pollen-based vegetation

classification scheme

PatchS
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Results

Mantel’s test between Fd/Fdp/Pd and geographical distance

did not show any significant associations (for Fd r = 0.12,

p = 0.2; for Fdp r = 0.27, p = 0.07; for Pd r = -10,

p = 0.67) indicating that geographically close sites were

not more similar in vegetation nor in pollen composition.

Vegetation and pollen variables and landscape variables

A total of 307 plant species corresponding to 127 pollen/

spore types were identified in the vegetation of the sam-

pling sites within the radius of 250 m (see the list with

pollen-equivalent taxa in Meltsov et al. 2011). Floristic

richness (Fr) varied between 80 and 163 (average = 117)

and floristic richness of pollen types (Frp) varied between

46 and 78 (average = 62) (Table 1). Fr was strongly pos-

itively correlated with Frp (r = 0.92, p \ 0.001) (see also

the results of Meltsov et al. 2011).

A total of 52 pollen/spore types were recorded from the

nine sediment samples. Palynological richness (Pr) varied

between 26 and 34 (average = 30) (Table 1). There were

statistically significant positive relationships between total

Pr and Fr (r = 0.76, p = 0.018) and between total Pr and

Frp (r = 0.94, p \ 0.01) (see also the results of Meltsov

et al. 2011).

Landscape diversity measures richness of community

patches (PatchR) and diversity of community patches

(PatchS) increased with distance from the lake, whereas

evenness of community patches (PatchE) decreased

(Fig. 3). Openness showed no clear trend in relation to

distance from the lake (Fig. 3).

Relationships between floristic and palynological

richness and landscape variables

Fr, Frp and Pr all showed statistically significant (p \ 0.05)

positive relationships with PatchR, PatchS, PatchE and

Openness (Fig. 4; ESM Table 1), indicating that landscape

openness and patchiness are important predictors of Fr, Frp

and Pr.

Landscape openness was the most significant measure to

account for both floristic and palynological richness.

Openness was positively correlated with both Fr and Frp

within all radii from the lake. Pr was also strongly posi-

tively (r [ 0.7) associated with openness but only within

the radii [ 750 m from the lake. The association of PatchR

with Fr and Frp was fairly strong (r C 0.69) at the shortest

distance (250 m), became weaker and insignificant at

intermediate distances (500–750 m), and increased again

beyond 1,000 m. In contrast to Fr and Frp, Pr was not

associated with PatchR at any distance. The importance of

PatchS in accounting for the vegetation and pollen vari-

ables showed an increasing trend with distance; the cor-

relations became significant within the radii of at least

1,000 m (for Fr and Frp) and at least 1,250 m (for Pr).

Although Fr was not significantly associated with PatchE

within any radii, both Frp and Pr were significantly cor-

related with PatchE at 1,750 and 2,000 m.

Discussion

Although several studies have used palynological richness

to estimate patterns of past vegetation diversity (e.g. Seppä

Fig. 3 Variation of measures of

landscape diversity (PatchR,

PatchE, PatchS and Openness)

at different distances from the

lakes. Variables are explained in

Table 2
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1998; Veski et al. 2005; Berglund et al. 2008; Overland and

Hjelle 2009), this study is the first attempt to determine the

relationships between landscape structure, floristic richness

and palynological richness using modern pollen–vegetation

data.

Pollen types do not always correspond to plant species

because of the limitations in pollen identification, which

allows pollen identification mostly to the genera, and in

some cases to the family level (Fægri and Iversen 1989;

Moore et al. 1991; Beug 2004). Therefore the transfor-

mation of floristic richness (Fr) into floristic richness of

pollen types (Frp) results in considerable reduction in

richness values. Nonetheless, Fr and Frp are strongly cor-

related as the floristic species richness corresponds to

genera richness and family richness (Mazaris et al. 2010).

Our results show that landscape openness is the most

important determinant of both Fr (and Frp) and Pr (Fig. 4)

in southern Estonia. Several other studies have shown that

both vegetation diversity (Pärtel et al. 2007; Billeter et al.

2008; Reitalu et al. 2010) and palynological diversity

(Berglund et al. 2008) are greatest at intermediate levels of

landscape openness. Openness in our study sites varies

from 1 to 51 %, which reflects largely the human-induced

landscape deforestation in Estonia over the last 5,000 years

(Poska 2001). In the present study, the relationships

between Fr/Frp/Pr values and landscape openness are linear

(Fig. 4), probably because the observed openness gradient

ranges from completely forested to half-open (Table 1;

Fig. 2). However, we speculate that the associations

between Fr/Frp/Pr and landscape openness are likely to be

unimodal if our study included completely open areas.

Landscape patchiness is also an important measure of

landscape structure in accounting for diversity in the veg-

etation and pollen records (Fig. 4). When comparing the

landscape diversity measures (PatchS, PatchR and PatchE),

both Fr (and Frp) and Pr were best related to PatchS

(Simpson’s diversity index; Fig. 4), indicating that a

Simpson’s diversity index provides more information on

the distribution of landscape patches than richness or

evenness alone and is therefore suitable to establish rela-

tionships with Fr, Frp and Pr.

Floristic richness (Fr and Frp) in comparison

with landscape variables

The highly significant relationship between openness and

Fr and Frp (Fig. 4) clearly indicates that increasing open-

ness provides habitats for more species than completely

forested landscape (Söderström et al. 2001; Honnay et al.

2003). The landscape at greater distances always includes

the landscape at closer distances leading to an inter-cor-

relation of openness at different distances, which accounts

for the relatively constant correlation of openness with Fr

and Frp at all distances (Fig. 4).

PachR and PatchS exhibit higher and more significant

correlations with Fr and Frp at the distances [750 m

(Fig. 4). The high diversity of the surrounding landscape is

expected to increase the number of species that can colo-

nize local community patches i.e. the local species pool

sensu Pärtel et al. 1996 (Öster et al. 2007; Reitalu et al.

2009, 2011; Costanza et al. 2011), which may explain why

Fr is related to landscape diversity at the greatest distances.

Alternatively, 250 m may be overly close and the vegeta-

tion classification scheme too coarse to capture the varia-

tion in patch richness at the shortest distances. Increasing

Fig. 4 Correlation coefficients (r) for relationships between measures

of landscape structure (PatchR, PatchE, PatchS and Openness) and

richness estimates (a Fr, b Frp and c Pr) within the radii of

250–2,000 m from the lakes. Values in black are statistically

significant at p-value \ 0.05. Variables are explained in Table 2
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the radius allows differentiation of the landscapes accord-

ing to patch richness, leading to significant associations

with Fr and Frp at greater distances.

Palynological richness (Pr) in comparison

with landscape variables

Pr has a highly significant correlation with Fr and therefore

the landscape diversity and openness are expected to

increase Pr as they increase Fr and Frp. Several studies

have shown that the boreo-nemoral zone has experienced

an increase in Pr with an increase in human-induced

landscape openness during the Holocene (Seppä 1997,

1998; Berglund et al. 2008; Overland and Hjelle 2009).

However, intensive agricultural management and urbani-

sation during recent centuries has led to a decrease in Pr

(Seppä 1997; Berglund et al. 2008) and Fr (Vitousek et al.

1997; Foley et al. 2005) in over-exploited areas.

Like Fr and Frp, correlations between Pr and landscape

diversity (PatchS) and openness are significant at distances

of 1,000–2,000 m for lakes with a median diameter of

200 m (Fig. 4). The RSAP for small lakes in southern

Estonia is about 1,400–1,600 m (Poska et al. 2011) and our

study indicates that the Pr reflects the landscape structure at

distances similar to the estimated RSAP.

Our results indicate that Pr estimates within one region

and climatic zone give reliable estimates of the variation in

Fr and Frp and landscape diversity. However, differences

in pollen production and dispersal of major species and

land-cover composition in different regions can cause

considerable discrepancies in observed Pr and Fr/Frp val-

ues and their relationship to landscape diversity. Seppä

(1998) compared the Pr of four sites in the northern Fen-

noscandian tree-line area and found that an open tundra site

with low vegetation diversity exhibited higher Pr than areas

with more diverse vegetation incorporating birch and pine

woods. He also discussed the importance of considering

pollen catchment area and concluded that comparisons

between sites from different regions are unreliable. These

conclusions are also supported by other studies (Weng

et al. 2006; Peros and Gajewski 2008), which show that

regions where sediment samples have low pollen concen-

trations, exhibit relatively high Pr and that a high number

of rare taxa is detected because more pollen grains of the

total population of pollen grains are counted to achieve the

desired pollen sum.

Gaillard et al. (1998) found a significant positive cor-

relation between non-arboreal pollen percentages and per-

centage cover of open herb vegetation in southernmost

Sweden. The dataset was later enlarged with additional

sites over a larger region of southern Sweden and the

relationship became less clear (Broström et al. 1998;

Hellman et al. 2009), suggesting, similarly to Seppä

(1998), that significant associations between pollen com-

position and landscape openness are region-specific and

enlarging the study area may affect the relationships.

There were highly significant relationships found

between floristic richness, floristic richness of pollen types,

palynological richness, landscape diversity and landscape

openness in southern Estonia. However, caution must be

taken when extending our results to compare pollen

inferred vegetation/landscape diversities from different

regions or when interpreting historical pollen records from

times with highly different vegetation associations. Addi-

tional studies are needed to understand the wider context of

the impact that floristic diversity and landscape structure

has on palynological diversity in different regions and

under different climatic conditions.

Conclusions

• Although plant species do not entirely correspond to

pollen types, the number of species (floristic richness)

was closely associated with the number of pollen types

(floristic richness of pollen types) in the vegetation,

indicating that pollen types are suitable for estimating

vegetation diversity.

• Landscape openness was the most important determi-

nant of both floristic richness (Fr and Frp) and

palynological richness (Pr) in southern Estonia.

• Landscape patchiness estimated by Simpson diversity

index (PatchS) was significantly associated with rich-

ness estimates.

• Floristic and palynological richness were significantly

positively correlated with landscape structure within

the radii larger than 1,000 m from the pollen sampling

sites.

• Palynological richness gives reliable estimates about

the variation in floristic richness and landscape struc-

ture within one floristic or climatic region. However,

caution must be taken when comparing pollen-inferred

vegetation diversities from different regions or when

interpreting pre-historical pollen records from times

with highly different vegetation associations.
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Pärtel M, Zobel M, Zobel K, Van der Maarel E (1996) The species

pool and its relation to species richness: evidence from Estonia

plant communities. Oikos 75:111–117
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